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(PTP1B) oxidation and cellular signaling through EGF-
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Protein-tyrosine phosphatases (PTPs) counteract protein
tyrosine phosphorylation and cooperate with receptor-tyro-
sine kinases in the regulation of cell signaling. PTPs need to
undergo oxidative inhibition for activation of cellular cas-
cades of protein-tyrosine kinase phosphorylation following
growth factor stimulation. It has remained enigmatic how
such oxidation can occur in the presence of potent cellular
reducing systems. Here, using in vitro biochemical assays
with purified, recombinant protein, along with experiments
in the adenocarcinoma cell line A431, we discovered that
bicarbonate, which reacts with H2O2 to form the more reac-
tive peroxymonocarbonate, potently facilitates H2O2-medi-
ated PTP1B inactivation in the presence of thioredoxin
reductase 1 (TrxR1), thioredoxin 1 (Trx1), and peroxiredoxin
2 (Prx2) together with NADPH. The cellular experiments
revealed that intracellular bicarbonate proportionally dic-
tates total protein phosphotyrosine levels obtained after
stimulation with epidermal growth factor (EGF) and that
bicarbonate levels directly correlate with the extent of PTP1B
oxidation. In fact, EGF-induced cellular oxidation of PTP1B
was completely dependent on the presence of bicarbonate.
These results provide a plausible mechanism for PTP inacti-
vation during cell signaling and explain long-standing obser-
vations that growth factor responses and protein phosphory-
lation cascades are intimately linked to the cellular acid– base
balance.

Receptor-tyrosine kinase (RTK)4 activation leads to trans-
mission of downstream phosphorylation cascades upon growth
factor stimulation, and has major importance in physiology and
proliferative diseases such as cancer. Protein-tyrosine phospha-
tases (PTPs), including PTP1B, counteract protein tyrosine
phosphorylation and thereby act together with RTKs to regulate
cell signaling (1). PTP activity depends upon a conserved ac-
tive-site Cys residue (1–4), which renders these enzymes suscep-
tible to oxidative inactivation. This has physiological importance,
because RTK activation triggers transient H2O2 production
from NADPH oxidases (NOXs) (5), which in turn leads to
reversible oxidation and inhibition of PTPs. Inactivation of
PTPs is believed to be absolutely required for RTK signaling (4,
6). NOXs are membrane-localized (typically on the plasma,
endosomal, or endoplasmic reticulum membrane) and use
cytoplasmic NADPH to produce superoxide and H2O2 on the
opposing membrane surface. The H2O2 must then enter the
cell, facilitated through aquaporins (7, 8), to exert its signaling
actions. During stimulation of platelet-derived growth factor
and epidermal growth factor (EGF) receptor pathways, the cat-
alytic Cys residue of PTP1B becomes reversibly oxidized and
thus inhibited (4, 9). The initial oxidation product is a sulfenic
acid (-SOH) (10, 11), which can condense to an internal sulfe-
nylamide (12–14) or undergo glutathionylation (15, 16).
Reversibly oxidized PTP1B can be reactivated by the thiore-
doxin (Trx) system (thioredoxin reductase 1 (TrxR1) and
NADPH with or without Trx1 or thioredoxin-related protein of
14 kDa (TRP14) (10, 17–19), thus enabling the Trx system to
modulate cellular RTK signaling (17).

It is much debated exactly how oxidation of PTP1B occurs in
a cellular environment, especially considering that members of
the peroxiredoxin (Prx) family of thiol proteins, which are
expressed at high levels in cells and also recycled predominantly
by the Trx/TrxR/NADPH system, are many orders of magni-
tude more reactive and therefore likely to react with nearly all
intracellular H2O2 (20 –22). Some cytosolic thiol-containing
proteins can be oxidized via Prx-mediated relays (23, 24), but
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this mechanism has not been demonstrated for PTP1B (25).
With PTP1B being a therapeutic target with key roles in pathol-
ogies such as type 2 diabetes, obesity, and cancer (26, 27), as well
as an archetypical example of oxidative inactivation in redox
signaling, it is important that the mechanism of this process
becomes understood.

We recently characterized the effect of H2O2 on PTP1B
activity and found that a reconstituted Prx2/Trx1/TrxR1/
NADPH system prevents PTP1B inactivation through both the
removal of H2O2 and recycling of the oxidized PTP1B (25). It
thus remains unclear how PTP1B can be inactivated by H2O2 in
the presence of a functional Prx/Trx system. One possibility is
that oxidation could be mediated by the more reactive per-
oxymonocarbonate (HCO4

�), which is spontaneously formed
in a reversible reaction between H2O2 and CO2/bicarbonate
(HCO3

�) (28, 29).

H2O2 � CO2/HCO3
�ª HCO4

� � H�/H2O

Reaction 1

The X-ray structure of peroxymonocarbonate shows a true
hydroperoxide (30), and it has been structurally and kinetically
characterized using 13C NMR (28). Bicarbonate at physiological
concentrations accelerates the reaction of H2O2 with thiols,
thioethers, amines, and other small molecules such as GSH and
albumin via formation of peroxymonocarbonate (29, 31, 32).
However, of particular note is the finding by Gates and co-
workers (33) that isolated PTP1B is especially reactive and
reacts 7000 times faster with HCO4

� than with H2O2 itself.
Although the impact of this mechanism is modulated by the
equilibrium shown above, it was suggested as a possible route
for PTP1B oxidation during cell signaling (20), but this proposal
has not been tested experimentally. Importantly, detection
of the peroxymonocarbonate species in vitro requires up to
0.1–1 M concentrations, making it virtually impossible to detect
directly in cellular systems. It is a highly reactive, short-lived
chemical species that is in equilibrium with H2O2, which gives
the same reaction products as hydrogen peroxide. Thus, there
are no specific probes or reagents that would distinguish per-
oxymonocarbonate from H2O2. However, recent studies have
identified links between regulation of bicarbonate levels, cell
growth, and cancer progression (34). Signaling through the
EGF receptor, which is an important event therapeutically tar-
geted for cancer treatment (35–37), has been directly linked to
bicarbonate-regulating enzymes. Notably, carbonic anhydrase
IX, a glycoprotein with an extracellular domain that catalyzes
hydration of CO2 (CO2 � H2O3HCO3

� �H�), becomes acti-
vated upon EGF ligand stimulation (38). Carbonic anhydrase IX
also localizes at the leading edge of focal adhesions, and its
overexpression increases the rate of adhesion and spreading
(39). Electroneutral sodium and bicarbonate cotransporter
proteins (NBCs), such as NBCn1, facilitate chloride-HCO3

� ex-
change with a Na�/HCO3

� stoichiometry of 2:1. These mem-
brane-bound proteins are important regulators of intracellular
bicarbonate levels and help to control cellular pH (40). In MCF7
breast cancer cells, NBCn1 expression is highly up-regulated
upon HER2 expression (41) and is correlated with tumor pro-
gression and metastasis (42). Furthermore, genetic or pharma-

ceutical disruption of several NBCs (SLCA4, SLC4A7, and
SLC4A9) suppresses tumor growth of breast cancer spheroids
and murine xenografts (43, 44), and chemical inhibition of
bicarbonate influx using S0859 decreases spheroid growth of
HCT116 cells (45). Considering these observations, we asked
whether bicarbonate can directly facilitate PTP1B oxidation in
the presence of a peroxiredoxin-recycling system and in a cel-
lular setting. Surprisingly, our results reveal that bicarbonate is
an obligate component of cellular PTP1B oxidation and EGF
responsiveness.

Results

Bicarbonate potently facilitates H2O2-dependent inactivation
of PTP1B

Using a direct activity assay with pure recombinant PTP1B,
we first confirmed the previously described facilitation of
H2O2-mediated inactivation of PTP1B by bicarbonate (33).
Compared with the inefficient dose- and time-dependent direct
inactivation of PTP1B by H2O2 (Fig. 1A), inclusion of a physio-
logical concentration of 25 mM bicarbonate potently increased

Figure 1. Bicarbonate potentiates H2O2-dependent inactivation of
PTP1B. A, recombinant PTP1B (600 nM) was treated with increasing concen-
trations of H2O2, 0 �M buffer control (F), 3.4 �M (E), 6.3 �M (�), 12.5 �M (�) 25
�M (Œ), 50 �M (f) (20 mM HEPES, 100 mM NaCl buffer, pH 7.4, containing 0.1
mM diethylenetriaminepentaacetic acid, 0.05% BSA, 1 mM sodium azide) and
then assayed for PTP activity at the indicated times. PTP1B activity is given in
min�1 (mol of product/mol of enzyme/min). Data points represent means �
S.D. (error bars) (n � 3). B, PTP1B was treated as in A but in the presence of 25
mM bicarbonate (final concentration after adding H2O2/bicarbonate and
assay buffer). Data points represent means � S.D. (n � 4). A representative run
is presented in Fig. S1.
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inactivation (Fig. 1B). Notably, bicarbonate alone had no effect
(Fig. 1B, control). We next examined whether inclusion of
bicarbonate facilitated H2O2-mediated inactivation of PTP1B
in the presence of a functional Trx system.

H2O2 and bicarbonate in combination can overcome
protection of PTP1B activity by the Trx/Prx system

As reported previously, in the absence of bicarbonate, Prx2/
Trx1/TrxR1/NADPH (at 10, 2, 0.5, and 200 �M, respectively)
fully protects PTP1B against inactivation by 100 �M H2O2 (25).
This is due to a combination of H2O2 removal by the peroxidase
activity of Prx2 and reduction of the sulfenic acid and sulfenyl-
amide forms of PTP1B by TrxR1 and Trx1, as illustrated in Fig.
2A. In the presence of bicarbonate (25 mM), where HCO4

� can
cause faster PTP1B inactivation, Prx2/Trx1/TrxR1/NADPH at
the same concentrations still gave almost complete protection
(Fig. 2B, 1 �M TrxR1). However, by lowering the TrxR1 concen-
tration (Fig. 2B) or Trx1 concentration (Fig. 2C), it was possible
to obtain conditions where PTP1B was inactivated for the dura-
tion of the experiment or inactivated at early time points, fol-
lowed by a time-dependent regain in activity during the assay.
The latter pattern is reminiscent of the transient PTP1B inac-
tivation expected to occur in cells during an oxidative burst
after growth factor stimulation. A higher concentration of pH-
adjusted bicarbonate (45 mM, pH 7.4) was also able to fully
overcome the complete protection of PTP1B against 50 �M

H2O2 provided by the cycling Prx/Trx system, as seen by a rapid
and sustained loss of PTP1B activity (Fig. 2D). At intermediate
concentrations of bicarbonate, maintaining the same pH, H2O2
caused transient PTP1B inactivation followed by recovery (Fig.

2D). These results show that there is an interplay between
bicarbonate, PTP1B, and the Trx/Prx redox cycling systems
and that there are conditions whereby bicarbonate, presumably
through the spontaneous production of peroxymonocarbonate
(33), promotes transient inactivation of PTP1B by H2O2. To
rule out possible inhibitory effects of bicarbonate and H2O2 on
the Trx system, NADPH consumption was measured using
insulin as a substrate (46). The results showed no difference in
consumption by bicarbonate alone or in combination with
H2O2 as compared with buffer control (Fig. S2).

Inhibition of bicarbonate cotransporters in A431 cells
decreases EGF-induced phosphorylation cascades

We next addressed whether the mechanism identified with
the purified enzymes applies to cellular systems, by examining
the effect of bicarbonate on protein phosphorylation cascades
triggered by growth factor stimulation. We used human A431
epidermal squamous carcinoma cells, as these cells are known
to inactivate PTP1B by oxidation in response to treatment with
EGF (10, 47). Extracellularly produced bicarbonate is trans-
ported into cells through membrane-bound cotransporter pro-
teins, NBCs, that control intracellular bicarbonate levels and
thereby cellular pH (40). We thus stimulated A431 cells with
EGF ligand for 2, 4, and 6 min with or without 1-h pretreatment
with S0859, a well-characterized inhibitor of NBCs (48). As
shown in Fig. 3 (A and B), EGF ligand induced a rapid increase
in total protein tyrosine phosphorylation, primarily associated
with the �198 kDa band representing the EGF receptor (Fig.
3A). This phosphorylation was notably inhibited when bicar-
bonate influx was blocked with S0859. The EGFR phosphory-

Figure 2. Modulation of bicarbonate- and H2O2-dependent inactivation of PTP1B in the presence of a Prx2/TrxR1/Trx1 redox system. A, scheme
showing relevant reactions in the experimental PTP1B/Prx2/thioredoxin system. Sox of PTP1B could be either the sulfenic acid or sulfenylamide species, with
the former also reducible by TrxR/NADPH in the absence of Trx. B, PTP1B (600 nM) was treated with 50 �M H2O2 together with 25 mM bicarbonate in the presence
of Trx1 (5 �M), Prx2 (10 �M), NADPH (300 �M), and increasing TrxR1 concentrations of 0 nM (f), 2 nM (Œ), 10 nM (�), 50 nM (�), 250 nM (E), and 1 �M (�) and with
1 �M TrxR1 using buffer-treated control without H2O2 (F). PTP activity was measured after the indicated times. Data points represent means � S.D. (error bars)
(n � 3). C, analyses were performed as in B with TrxR1 (1 �M) and increasing Trx1 concentration, 0 �M (�), 0.5 �M (�), 1 �M (Œ), 2 �M (f), and 5 �M (F) (n � 1).
D, analyses performed as in A with TrxR1 (15 nM) and increasing concentrations of bicarbonate as indicated, 0 mM (f), 5 mM (Œ), 10 mM (�), 15 mM (�), 25 mM

(E), 35 mM (�), and 45 mM (‚) (n � 1).
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lation site Tyr-992 (pY992), previously shown to be regulated
by PTP1B (49), was also significantly inhibited at all time points
by S0859 (Fig. 3, C and D).

Lactic acid pretreatment of A431 cells decreases EGF-induced
phosphorylation

We next investigated whether protein tyrosine phosphoryla-
tion patterns were affected by physiologically relevant lactic
acid concentrations, which decrease cellular bicarbonate as
well as pH at events of metabolic acidosis. Lactic acid (up to 40
mM) was added to the growth medium of A431 cells 2 min prior
to the addition of EGF ligand. Measurements made after 5-min
stimulation showed that lactic acid concentrations above 10
mM resulted in a progressive decrease in total protein tyrosine
phosphorylation (Fig. 4A). Time course measurements showed
that the addition of 15 mM lactic acid slowed the onset of EGF-
dependent phosphorylation, whereas 30 mM gave very strong
inhibition at all time points (Fig. 4B).

Bicarbonate depletion at constant pH decreases EGF-induced
protein tyrosine phosphorylation in A431 cells

As the results in Figs. 3 and 4 could be attributed to effects of
bicarbonate or to general pH effects, we next assessed whether
lowering cellular levels of bicarbonate without changing the pH
would still affect protein tyrosine phosphorylation patterns.
A431 cells were cultured in regular DMEM and subsequently
starved overnight in low-serum bicarbonate-free HEPES-buff-

ered (50 mM) medium, with the addition of 0, 40, or 60 mM

bicarbonate, adjusted to pH 7.4, and equilibrated in air with
varying percentages of corresponding CO2 levels (0, 5, and 10%,
respectively). The A431 cells were stimulated with EGF ligand
after 1 day of these culture conditions and harvested 2, 4, and 6
min after the EGF addition. Analyses of total protein phospho-
tyrosine revealed increases in phosphorylation at the higher
bicarbonate concentration, most pronounced for a band (not
identified) at about 28 kDa seen at longer exposures (Fig. 5).
Thus, increased cellular bicarbonate levels augment EGFR-
linked protein phosphorylation in A431 cells independently of
pH-derived effects.

Oxidation of PTP1B in A431 cells during EGF stimulation
depends on the presence of bicarbonate

The observed bicarbonate-dependent increases seen in EGF-
triggered phosphorylation are consistent with oxidative inacti-
vation of PTPs. However, this is an indirect readout, and other
explanations are possible. We therefore looked for direct evi-
dence of oxidative PTP1B inactivation using a cysteine-labeling
assay that detects reversible thiol oxidation (50, 51). The basis
of the assay is to use a biotin tag that labels only reversibly
oxidized thiol proteins and isolates the labeled proteins with
streptavidin. Immunoblotting against the protein of interest
will give a positive response only if it has been oxidized.
When this procedure was applied to A431 cells maintained
in regular bicarbonate-containing DMEM, we detected a
time-dependent increase in oxidized PTP1B peaking at 2
min after the EGF addition (Fig. 6A). This is in agreement
with earlier reports (10). Most strikingly, pretreatment with
the NBC inhibitor S0859 completely abrogated the EGF-de-
pendent PTP1B oxidation at the 2-min time point (Fig. 6A).
Furthermore, PTP1B oxidation was not seen when the cells
were treated with EGF in HEPES-buffered bicarbonate-free
DMEM. Finally, the addition of pH-equilibrated bicarbonate
to the bicarbonate-free cells before EGF stimulation brought
oxidation of PTP1B back to the level seen in bicarbonate-
containing DMEM (Fig. 6A). Thus, the presence of bicarbon-
ate in cells is a crucial and apparently obligate component for
EGF-dependent phosphorylation cascades that require oxi-
dation and inactivation of PTP1B.

Discussion

Reversible oxidative inhibition of PTPs is a key regulatory
event during growth factor signaling (52). The molecular mech-
anisms leading to PTP oxidation have remained unclear,
although it is well-known that RTK activation involves cellular
production of H2O2 derived from NOX enzymes (5). Several
models for PTP inactivation have been proposed, such as the
“floodgate” hypothesis in which inactivation of Prxs enables
oxidation of less-reactive proteins (53) or redox relay–me-
diated oxidation via Prxs (23, 24). Our results add another
dimension and reveal that a concerted action of H2O2 together
with bicarbonate is required for inactivation of PTP1B and the
initiation of protein phosphorylation cascades.

The results with the recombinant proteins clearly showed
that H2O2 triggered inactivation of PTP1B in the presence of a
fully active and cycling Prx system only when bicarbonate was

Figure 3. Pharmacological inhibition of bicarbonate cotransporters in
A431 cells decreases EGF ligand-induced phosphotyrosine formation.
Overnight starved A431 cells in regular bicarbonate-containing DMEM 0.1%
FCS) were pretreated with the NBC inhibitor S0859 (100 �M) or DMSO control
for 1 h prior to EGF stimulation for 2, 4, and 6 min. Cell extracts were separated
by SDS-PAGE and Western blotted (IB) for total phosphotyrosine and EGF
receptor (A) and specific phosphorylation of the EGF receptor Tyr-992 (pY992)
residue (C). Bar diagrams show densitometry ratios for total signal over all
phosphotyrosine bands (B) or the specific pTyr-992 signal (D), relative to the
immunoblot staining for the EGF receptor. Every ratio is compared with
that in unstimulated control, which was set to 1. Results are mean � S.D.
(error bars) for three independent experiments with filled circles showing
individual results. Statistically significant differences are indicated (*, p �
0.05). The membranes in the figure stained with Ponceau for total protein
loading are shown in Fig. S3.
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present. We used all reactants at physiologically relevant con-
centrations and were able to vary conditions within these to see
transient inactivation and reactivation, reminiscent of a signal-
ing step. We propose a mechanism to explain these results in
which H2O2 can either be scavenged by Prx2 or react with
bicarbonate to generate peroxymonocarbonate, which is
responsible for PTP1B inactivation (Fig. 2A). Increasing the
bicarbonate favors the latter, whereas regeneration of reduced
Prx2 by the thioredoxin system enhances H2O2 removal and is
protective. It is possible that peroxymonocarbonate could also
react with Prx2 in this system. However, we have recently found
that oxidation of the reduced protein is unaffected by the pres-
ence of bicarbonate.5 Although hyperoxidation was enhanced,
this would cause only minor inactivation of the Prx2 under the
conditions of our current study. Nevertheless, in other situa-
tions, this could amplify the effect on PTP1B. Complementing
these oxidative reactions are the reductive steps involving
reduction of Prx2 disulfide to maintain its scavenging activity as
well as recycling of PTP1B, either through a reaction of the
sulfenic acid intermediate directly with TrxR1 (25) or recycling
of the sulfenylamide by TrxR1 together with Trx1 or TRP14
(17). The balance between these steps determines the extent to
which PTP1B is initially inactivated and subsequently reacti-

vated as the H2O2 is consumed and the reducing mechanisms
dominate.

To test the relevance of this mechanism of PTP1B inactiva-
tion during EGF-triggered signaling context, we modulated the
cellular bicarbonate levels using three different approaches.
Lowering bicarbonate uptake with the NBC inhibitor S0859
resulted in less EGFR-dependent protein tyrosine phosphory-
lation in A431 cells. Likewise, the addition of lactic acid, which
lowers bicarbonate levels by a shift in acid– base equilibrium,
also decreased phosphotyrosine levels following EGF ligand
stimulation in a dose-dependent manner. These observations
are compatible with the notion that lower intracellular levels of
bicarbonate give less inhibition of cellular PTP activity, but
other effects of acidification could not be excluded. However,
the experiments with cells grown in pH-controlled HEPES-
buffered DMEM revealed signaling effects of bicarbonate not
related to changes in pH.

Our results collectively suggest a molecular mechanism by
which physiological changes in bicarbonate levels affect
growth factor signaling responses. This conclusion is sub-
stantiated by the finding that the cysteinyl-labeling assay
detected EGF-dependent oxidation of PTP1B only in the
presence of bicarbonate. Thus, bicarbonate seems to be an
obligate factor for EGF-dependent PTP1B oxidation. We
hence propose a model for redox regulation of PTP1B during5 A. V. Peskin and C. C. Winterbourn, unpublished observations.

Figure 4. Treatment of A431 cells with lactic acid prior to EGF ligand stimulation results in less phosphorylation. A, concentration dependence.
Serum-starved A431 cells in regular DMEM containing bicarbonate were pretreated for 2 min with 0, 5, 10, 20, and 40 mM lactic acid and subsequently
stimulated with EGF (100 ng/ml) for 5 min. Lysates were analyzed for total phosphotyrosine. B, time course. A431 cells were pretreated for 2 min with 0, 15, and
30 mM lactic acid and subsequently stimulated with EGF (100 ng/ml) for 2, 4, and 6 min. Lysates were analyzed for total phosphotyrosine. The right-hand panels
in A and B show densitometry analyses as in Fig. 3 with filled circles showing individual results (n � 3; mean � S.D. (error bars); *, p � 0.05). The membranes in
this figure stained with Ponceau for total protein loading are shown in Fig. S4.
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growth factor signaling, in which the growth factor initiates
transient production of H2O2, which must act jointly with
bicarbonate to achieve PTP1B inactivation and initiate phos-
phorylation cascades. For the reasons given in the Introduc-
tion, we believe that, although it is not possible to validate
experimentally, this mechanism most likely occurs through
the formation of peroxymonocarbonate (Fig. 6B).

Our investigation so far has focused on PTP1B, but it is pos-
sible that the redox state of other thiol proteins could be regu-
lated by bicarbonate. Gates and co-workers (33) showed that
SHP1 is also highly reactive with peroxymonocarbonate, but
this was not a general property of all of the thiol proteins they
studied. Thus, there appears to be selectivity, and our findings
give credence to the possibility that peroxymonocarbonate has
a wider, yet unexplored, role in H2O2-mediated redox signaling.
They also provide a plausible explanation for how some thiol
proteins that react slowly with H2O2 in isolation (when bicar-
bonate is typically not present) appear to be oxidant-sensitive
during cell signaling.

Another important consideration is that intracellular bicar-
bonate-regulating enzymes such as CA II, IX, XII, and NBCs
have been shown to contribute do disease pathology, such as
promotion of tumor development, through a more alkaline
intracellular milieu (34, 38, 39, 54). Although most focus has
been on pH effects of alkalinization of the intracellular milieu,
we here propose an alternative and yet unexplored mechanism
whereby redox changes associated with growth factor re-
sponses, such as the inhibition of PTP1B, are dependent specif-
ically upon bicarbonate.

Experimental procedures

Expression of recombinant proteins

The catalytic domain (residues 1–322) of PTP1B was sub-
cloned into pD441-H6 vector using PCR with primers 5�-
GTAGGTCTCGGTGGTATGGAGATGGAAAAGGAG-
TTC-3� and 5�-GTAGGTCTCTTATTACCCATTGTGTG-
GCTCCAGG-3� and Eco31I and DpnI restriction sites. The
PTP1B protein was expressed and purified under reducing
conditions according to previously described procedures,
including subsequent tag removal (25, 55). Prx2 protein was
expressed and purified with a His tag, which was cleaved off
as described previously (56). Recombinant human Trx1 and
rat TrxR1 WT were expressed and purified as described pre-
viously (55). PTP1B was subjected to buffer exchange to
remove reductant before all experiments, using Zeba Spin
Desalting Columns (Thermo Scientific catalog no. 87766).
Protein concentrations were determined using Bradford
reagents.

Figure 5. Bicarbonate increases total phosphorylation in A431 cells after
EGF ligand stimulation. A, A431 cells were grown and incubated overnight
in low-serum HEPES-buffered (50 mM) DMEM at pH 7.4 with 0, 40, and 60 mM

bicarbonate added and equilibrated with 0, 5, and 10% CO2, respectively, as
indicated. The cells were then stimulated with EGF and analyzed for total
phosphotyrosine. B, densitometry for three independent experiments, of
short- and long-exposed membranes, for high-molecular weight (HMW) phos-
phorylated proteins, and �28 kDa band, respectively (dashed rectangles in A)
quantified in relation to Ponceau staining with 2-, 4-, and 6-min time points
combined (n � 3; mean � S.D. (error bars); *, p � 0.05). Symbols indicate
individual results. IB, immunoblotting.

Figure 6. A, bicarbonate is required for EGF-dependent reversible PTP1B oxi-
dation in A431 cells. A431 cells were incubated overnight either in low-serum
regular DMEM-containing bicarbonate or in HEPES-buffered DMEM (50 mM,
pH 7.4). Pretreatment of the cells in bicarbonate-containing DMEM with the
NBC inhibitor S0859 (50 �M) was for 1 h prior to stimulation. Bicarbonate (60
mM) was added to cells in HEPES-buffered DMEM and subsequently stimu-
lated. At the indicated times after EGF stimulation, cells were subjected to the
cysteinyl-labeling assay using biotinylated iodoacetyl-PEG2-biotin for analy-
sis of reversible PTP1B oxidation. Biotinylated proteins were purified on
streptavidin-Sepharose beads, resolved by SDS-PAGE, and visualized using
antibodies against PTP1B. PTP1B control levels were determined from total
cell lysate by SDS-PAGE and blotting (IB) against PTP1B. Representative West-
ern blotting of three independent experiments is shown. B, model for regu-
lation of PTP1B activity during growth factor signaling. EGFR activation
induces a transient burst of H2O2, which reacts with bicarbonate to give
PTP1B oxidation via peroxymonocarbonate (red) and activation of phosphor-
ylation pathways (green arrow). Prxs compete for the H2O2, and the Trx system
decreases the availability of H2O2 by supporting the Prx cycle and also acts by
reactivating oxidized PTP1B. See “Discussion” for further details.
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Treatment of PTP1B with H2O2 and bicarbonate

Reduced PTP1B (600 nM) was pre-incubated for 20 min in 20
mM HEPES, 100 mM NaCl buffer, pH 7.4, containing 0.1 mM

EDTA, 0.05% BSA, 1 mM sodium azide, with the indicated con-
centrations of Trx1, TrxR1, NADPH (N7505, Sigma-Aldrich),
and Prx2. Sodium azide was used to inhibit any trace amounts
of catalase. Each reaction mixture was exposed to H2O2 with
and without bicarbonate for the indicated times. Bicarbon-
ate and H2O2 were premixed prior to treatment. Subsequent
to treatment, measurement of PTP activity was performed.

PTP activity assay

PTP activity was assessed using 15 mM chromogenic sub-
strate 4-nitrophenyl phosphate (P4744, Sigma-Aldrich) as
described previously (57). Rates of absorbance increase were
measured at 410 nm at 22 °C using an Infinite M200 Pro plate
reader (Tecan) and calibrated using a 4-nitrophenol standard
curve.

Treatment of PTP1B with H2O2

Buffer-exchanged reduced PTP1B was exposed to H2O2 and
different components of the Trx system at the indicated time
points followed by the addition of substrate and measurement
of activity. We initially observed that incubation of PTP1B
alone resulted in some time-dependent inactivation that was
partially prevented in the presence of BSA, so BSA (0.05%) was
added to the buffer. The activity after each H2O2 treatment
was related to the activity of untreated PTP1B incubated for
the same time. A 0 –24% loss of activity was seen in control
conditions at 30 min.

Insulin-coupled TrxR assay

NADPH consumption was measured through incubation of
the Trx system (1 �M TrxR1, 20 �M Trx1, and 300 �M NADPH)
together with 0.16 mM insulin in 20 mM HEPES, 100 mM NaCl
buffer, pH 7.4, containing 0.1 mM EDTA, 0.05% BSA with and
without 25 mM bicarbonate and 100 �M H2O2.

Cell culture conditions and treatments

Adenocarcinoma cell line A431 cells (ATCC) were typically,
unless stated otherwise, cultured in DMEM (44 mM sodium
bicarbonate, 5% CO2) � 10% (v/v) fetal bovine serum, 2 mM

L-glutamine, penicillin, and streptomycin. Cells were grown
until 90% confluence and then starved for 24 h in 0.1% fetal
bovine serum. Pretreatment of starved cells prior to ligand
stimulation was performed with the indicated concentrations
of either lactic acid (Sigma-Aldrich, catalog no. L6402), S0859
(Sigma-Aldrich, catalog no. SML0638), or sodium bicarbonate
(Merck, catalog no. 9018415). Ligand stimulations were per-
formed with 100 ng/ml EGF ligand (R&D Systems, catalog no.
236-EG-200). For cell culture conditions with varying concen-
trations of bicarbonate, bicarbonate-free DMEM (D5648)
(0.1% (v/v) FBS, 2 mM L-glutamine, penicillin, and streptomy-
cin) was supplemented with 50 mM HEPES and 0, 40, and 60 mM

bicarbonate, set to pH 7.4, and pre-equilibrated in 0, 5, and 10%
CO2, respectively, for 3 days prior to the addition to cells, as
stated above.

SDS-PAGE and analysis of protein tyrosine phosphorylation

Treated cells were washed with ice-cold PBS (pH 7.4) and
lysed with lysis buffer (0.5% Triton X-100, 0.5% sodium deoxy-
cholate salt/deoxycholic acid, 150 mM NaCl, 20 mM Tris (pH
7.5), 10 mM EDTA, and 30 mM sodium pyrophosphate (pH 7.5),
supplemented with 200 �M sodium orthovanadate and a prote-
ase inhibitor mixture (Roche Applied Science)). Protein con-
centration of lysates was determined using the Bradford assay.
Equal amounts of lysate protein were resolved by SDS-PAGE,
transferred to polyvinylidene difluoride membranes (Milli-
pore), blocked with 5% milk in TBS, and immunoblotted for
total phosphotyrosine 4G10 (Merck, catalog no. 05-321)
(1:1000) and EGFR pTyr-992 (Cell Signaling). The total amount
of loading was verified using Ponceau staining of blotted mem-
branes or EGFR intensities (AF231, R&D Systems). Protein
phosphotyrosine intensities were quantified using ImageJ and
shown as a ratio of loading control, as described.

Detection of reversible PTP oxidation in cells

The cysteinyl-labeling assay of reversibly oxidized PTP1B
was performed as described previously (50, 51). The lysis buffer
(50 mM sodium acetate, pH 5.5, 150 mM NaCl, 10% glycerol, 1%
Surfact-Amp Nonidet P-40, 5 �g/ml aprotinin, 5 �g/ml leupep-
tin, 50 units/ml superoxide dismutase, 50 units/ml catalase, 10
mM iodoacetic acid) was degassed and placed on ice into a
hypoxic glove-box station equilibrated with 100% argon. Cells
cultured in 100-mm dishes were treated and then transferred
from a 37 °C/5% CO2 environment into a hypoxic glove-box
station, medium was carefully removed, and cells were rapidly
lysed with 800 �l of ice-cold lysis buffer. Lysates were trans-
ferred to amber-colored microcentrifuge tubes and shaken for
1 h at room temperature to alkylate reduced thiols. Protein
concentrations were determined, and 1 mg of lysate was applied
to a spin column to remove excess iodoacetic acid. Tris(2-car-
boxyethyl)phosphine (1 mM) was then added to reduce revers-
ibly oxidized protein thiols. Following this step, 5 mM EZ-link
iodoacetyl-PEG2-biotin probe (Pierce) was added to the lysate
to label the reactivated thiols. Labeled proteins were then
pulled down by streptavidin-Sepharose beads, which were
washed with lysis buffer (pH 5.5), resuspended in 20 �l of 4	
Laemmli sample buffer, and heated at 90 °C for 90 s. Samples
were resolved by SDS-PAGE and blotted with anti-PTP1B.
Immunoblots of total cell lysates were run as controls.

Statistical analyses

Analyses of data were performed using GraphPad Prism with
two-way analysis of variance followed by Bonferroni post hoc
tests for multiple comparisons.
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man, A. (2014) The mitochondrial reactive oxygen species regulator
p66Shc controls PDGF-induced signaling and migration through protein
tyrosine phosphatase oxidation. Free Radic. Biol. Med. 68, 268 –277
CrossRef Medline

12. van Montfort, R. L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003)
Oxidation state of the active-site cysteine in protein tyrosine phosphatase
1B. Nature 423, 773–777 CrossRef Medline

13. Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks,
N. K., and Barford, D. (2003) Redox regulation of protein tyrosine phos-
phatase 1B involves a sulphenyl-amide intermediate. Nature 423,
769 –773 CrossRef Medline

14. Sivaramakrishnan, S., Cummings, A. H., and Gates, K. S. (2010) Protection
of a single-cysteine redox switch from oxidative destruction: on the func-
tional role of sulfenyl amide formation in the redox-regulated enzyme
PTP1B. Bioorg Med. Chem. Lett. 20, 444 – 447 CrossRef Medline

15. Rinna, A., Torres, M., and Forman, H. J. (2006) Stimulation of the alveolar
macrophage respiratory burst by ADP causes selective glutathionylation
of protein tyrosine phosphatase 1B. Free Radic. Biol. Med. 41, 86 –91
CrossRef Medline

16. Barrett, W. C., DeGnore, J. P., König, S., Fales, H. M., Keng, Y. F., Zhang,
Z. Y., Yim, M. B., and Chock, P. B. (1999) Regulation of PTP1B via gluta-
thionylation of the active site cysteine 215. Biochemistry 38, 6699 – 6705
CrossRef Medline

17. Dagnell, M., Frijhoff, J., Pader, I., Augsten, M., Boivin, B., Xu, J., Mandal,
P. K., Tonks, N. K., Hellberg, C., Conrad, M., Arnér, E. S., and Östman, A.
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